Successive Nonnegative Projection Algorithm for Robust Nonnegative Blind Source Separation
نویسنده
چکیده
In this paper, we propose a new fast and robust recursive algorithm for near-separable nonnegative matrix factorization, a particular nonnegative blind source separation problem. This algorithm, which we refer to as the successive nonnegative projection algorithm (SNPA), is closely related to the popular successive projection algorithm (SPA), but takes advantage of the nonnegativity constraint in the decomposition. We prove that SNPA is more robust than SPA and can be applied to a broader class of nonnegative matrices. This is illustrated on some synthetic data sets, and on a real-world hyperspectral image.
منابع مشابه
Extended Sparse Nonnegative Matrix Factorization
In sparse nonnegative component analysis (sparse NMF) a given dataset is decomposed into a mixing matrix and a feature data set, which are both nonnegative and fulfill certain sparsity constraints. In this paper, we extend the sparse NMF algorithm to allow for varying sparsity in each feature and discuss the uniqueness of an involved projection step. Furthermore, the eligibility of the extended...
متن کاملPattern Expression Nonnegative Matrix Factorization: Algorithm and Applications to Blind Source Separation
Independent component analysis (ICA) is a widely applicable and effective approach in blind source separation (BSS), with limitations that sources are statistically independent. However, more common situation is blind source separation for nonnegative linear model (NNLM) where the observations are nonnegative linear combinations of nonnegative sources, and the sources may be statistically depen...
متن کاملFast Local Algorithms for Large Scale Nonnegative Matrix and Tensor Factorizations
Nonnegative matrix factorization (NMF) and its extensions such as Nonnegative Tensor Factorization (NTF) have become prominent techniques for blind sources separation (BSS), analysis of image databases, data mining and other information retrieval and clustering applications. In this paper we propose a family of efficient algorithms for NMF/NTF, as well as sparse nonnegative coding and represent...
متن کاملHierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization
In the paper we present new Alternating Least Squares (ALS) algorithms for Nonnegative Matrix Factorization (NMF) and their extensions to 3D Nonnegative Tensor Factorization (NTF) that are robust in the presence of noise and have many potential applications, including multi-way Blind Source Separation (BSS), multi-sensory or multi-dimensional data analysis, and nonnegative neural sparse coding....
متن کاملNonnegative Tensor Factorization, Completely Positive Tensors, and a Hierarchical Elimination Algorithm
Nonnegative tensor factorization has applications in statistics, computer vision, exploratory multiway data analysis and blind source separation. A symmetric nonnegative tensor, which has an exact symmetric nonnegative factorization, is called a completely positive tensor. This concept extends the concept of completely positive matrices. A classical result in the theory of completely positive m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 7 شماره
صفحات -
تاریخ انتشار 2014